A Fuzzy-based Prior Knowledge Diagnostic Model with Multiple Attribute Evaluation

Abstract

Prior knowledge is a very important part of teaching and learning, as it affects how instructors and students interact with the learning materials. In general, tests are used to assess students’ prior knowledge. Nevertheless, conventional testing approaches usually assign only an overall score to each student, and this may mean that students are unable to understand their own specific weaknesses. To address this problem, previous work has presented a prior knowledge diagnosis model with a single attribute to assist instructors and students in diagnosing and strengthening prior knowledge. However, this model neglects the fact that a diagnostic decision might involve multiple attributes. In order to provide more a precise diagnosis to instructors and students, this study thus proposes a fuzzy prior knowledge diagnosis model with a multiple attribute decision making technique for diagnosing and strengthening students’ prior knowledge. The experimental results from an interdisciplinary bioinformatics course have demonstrated the utility and effectiveness of this innovative approach.

Topics

26 Figures and Tables

Download Full PDF Version (Non-Commercial Use)